
24 IEEE MICROWAVE MAGAZINE – Vol. 23(4) – pp. 24-44

Flexible Electronics for Wireless Communication:
A Technology and Circuit Design Review

With an Application Example
Tilo Meister, Member, IEEE, Koichi Ishida, Member, IEEE, Corrado Carta, Senior Member, IEEE,

Niko Münzenrieder, Senior Member, IEEE, Frank Ellinger, Senior Member, IEEE

This is the author’s version of the article. It cites more publications and provides more elaborate, searchable comparison tables than the final version. Copyright © 2022 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. The DOI of the final version is 10.1109/MMM.2021.3136684 .

Abstract—This article reviews the current state of the art of
wireless communication in fully flexible electronics technologies.
Modern flexible electronics technologies allow the fabrication of
devices that integrate in our daily lives in a very natural way.
They can be incredibly light weight and transparent to the point
of being virtually unperceivable. The combination of this subtlety
with the ability to communicate wirelessly, plus the infrastructure
established for the internet-of-things, might lead to a whole new
class of flexible devices that are omnipresent in our lives.

This article first gives an overview of flexible organic, metal-
oxide, carbon-based, amorphous-silicon-based, and monolithic-
silicon-based technologies. After that, key circuits that are needed
for wireless communication systems and aspects of their realiza-
tion are discussed. The discussion of circuits and applications
is focused around the favorable flexible metal-oxide thin-film
technologies.

Finally, as an application example, a next-generation flexible
wireless moisture sensor from the authors’ recent work and
details about its circuit block are presented. The moisture sensor
tag is fully integrated in a 5 V flexible amorphous indium
gallium zinc oxide (a-IGZO) TFT technology. The tag consists
of an on-off-keying (OOK) modulator with digitally controlled
oscillator (DCO), a moisture sensor, a pseudo-CMOS clocked
comparator, a latch, a low frequency oscillator, and an antenna.
The wireless moisture sensor is fabricated on a plastic substrate
and characterized with a 5 V supply voltage. The integrated DCO
synthesizes the carrier frequency on-chip. Its average frequency
of oscillation is 1.36 MHz, and it achieves a tuning range of
15 %. The OOK-modulator successfully modulates a ≤ 50 kHz
baseband signal with a 300 mV maximum output swing and
a modulation index of around 50 %. The clocked comparator
achieves 28 dB open loop gain with a minimum input offset of
25 mV. The moisture sensor is characterized with a small drop of
tap water. The water drop covering the sensor area of 0.44 mm2

raises the sensor output from 0.28 mV to 1.60 V, which is detected
by the comparator and fed to the OOK-modulator by the latch.

I. INTRODUCTION

There is a practical gap between conventional rigid electron-
ics and bendable items from daily-life, such as paper, tape, tex-
tiles, and the human body. This space can be bridged by flex-
ible transistor technologies, which typically offer bendability,
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Fig. 1. Prototype of a fully flexible, fully integrated moisture sensor with
on-off keying (OOK) transmitter on a 50 µm polyimide substrate. It has an
area of 16×16mm2 and includes a moisture sensor, sensor readout circuitry,
two local oscillators, an OOK modulator, and an antenna.

a light weight, ultrathin dimensions, transparency, sometimes
stretchability, suitability for large areas, and a low cost. Thanks
to the continuous increase of the maximal operation frequency
of flexible electronics, wireless communication is becoming
one of the promising enablers for many new applications and
is widely studied.

For a long time, electronics have advanced in terms of
speed, power consumption, integration density, and cost. In
particular, reductions in feature sizes, which lead to improve-
ments in integration density, are expected to keep slowing
down, e.g. due to thermal noise constraints. This trend has
long been predicted, and it has motivated the investigation of
multiple alternative electronic technologies, including mechan-
ically flexible ones.

Figure 1 displays an advanced fully flexible moisture sensor,
which was designed by the authors and is presented as an
application example in Section V. It can wirelessly transmit a
sensor value via its integrated transmitter. It was manufactured
on a 50 µm-thick polyimide substrate, using a 5 V flexible tech-
nology [1], [2] based on the metal-oxide (MO) semiconductor
indium gallium zinc oxide (IGZO). A key characteristic is that
this technology can be fabricated at temperatures sufficiently
low that the polyimide substrate is not damaged.

http://dx.doi.org/10.1109/MMM.2021.3136684
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Fig. 2. Compressive and tensile stress in a bent thin-film transistor (TFT)
circuit. The red markers in the substrate cross-section qualify the amount of
stress in the circuit.

The fully integrated tag consists of an on-off-keying (OOK)
modulator with a digitally controlled oscillator (DCO), a
moisture sensor, a pseudo-CMOS clocked comparator, a latch,
a low-frequency oscillator, and an antenna. The integrated
DCO synthesizes the carrier frequency on-chip. Its average
frequency of oscillation is 1.36 MHz, and it achieves a tuning
range of 15 %. The OOK modulator successfully modulates
a ≤ 50 kHz baseband signal, with a 300 mV maximum output
swing and a modulation index of around 50 %. The clocked
comparator achieves 28 dB open-loop gain with a minimum
input offset of 25 mV.

In general, any conductor, any semiconductor, any insulator,
any composite of those, or any solid material is bendable to
some degree. The limit for bending any solid, which is called
the minimum bending radius rmin, can be expressed in terms
of the material’s maximum tensile strain εyield and thickness
d. Figure 2 illustrates the compressive and tensile strain in a
cross-section of a bent thin-film transistor (TFT) circuit. The
peak tensile and compressive strains occur on the upper and
lower surfaces, respectively. The tensile strain is the ratio of
the solid’s unstressed length L0 = AB and the amount of its
elongation ∆L = CD−AB. It is usually given as percentage:

ε =
∆L

L0
. (1)

Tensile strain ε can be related to tensile stress σ by Young’s
modulus E:

E ≡ tensile stress
tensile strain

=
σ

ε
=

F/A
∆L/L0

, (2)

where A and F are the cross-sectional area and the perpen-
dicular force applied to it, respectively.

The substrates used for flexible electronics are often around
10 µm to 50 µm thick, and can be as thin as 1.2 µm. The
active layers of a TFT circuit and interconnect layers tend to
accumulate to a thickness of roughly 1 µm or less. On top of
the active layers, there can be a thick passivation, or protective,
layer.

If the cumulative thickness of the active TFT layers and
passivation is on the order of the substrate thickness, all layers

have a noticeable effect on the position of the neutral axis,
which is the axis without any strain. In this case, all layers
have to be carefully considered when determining the distance
d/2 between the neutral axis and the layer to be considered.
With careful design, this can enable an active TFT layer to
be located at or close to the neutral axis, which minimizes
strain while maximizing bendability. For thick homogeneous
substrates, however, the neutral axis can be estimated to be at
the center of the substrate, and d/2 can be approximated to be
half the substrate thickness. From this simplification and the
relations shown in Fig. 2, the tensile strain in the TFT layers
due to bending can be calculated as

ε =
∆L

L0
=
d

2
· 1

r
. (3)

The maximum strain εyield of each material before it yields
can be determined from mechanical measurements. Thus, the
minimum bending radius rmin of a TFT circuit before a certain
layer fails due to deformation, kinking, or cracking can be
calculated:

rmin =
d

2 · εyield
. (4)

As evident from Eq. (4), the thinner a solid gets d↓, the tighter
it can be bent rmin↓ before deforming, kinking, or rupturing.
Consequently, the active layers of flexible electronics always
have to be close to the neutral axis of the substrate or
package. This can be achieved by using thin substrates and
by sandwiching the active layers in the middle of a flexible
package.

For thin films of a typical conductor, such as gold and
copper, εyield is between only 1 % and 2 % [3]. Such a thin
gold trace on the surface of a 50 µm thick polyimide substrate
would start to crack at a bending radius of r ≈ 2.5 mm,
while a copper film on a 775 µm thick silicon (Si) die would
theoretically start to crack at a bending radius of r ≈ 40 mm.
This is, however, a theoretical value, because at a ten times
larger radius [4], the silicon substrate would already have
started to crack.

II. FLEXIBLE TECHNOLOGIES

At the heart of fully flexible electronic systems are fully
bendable integrated circuits (ICs). The mobility µ of the
semiconductor(s) and the transit frequency ft of the transistor
devices are central figures of merit to evaluate the performance
of the flexible IC.

Mobility is a measure of how well carriers are transported
in a material and differs for holes and electrons. It is, among
other things, a figure of merit for semiconductor layers. This
mobility often does not consider effects such as contact resis-
tance. Mobility can be defined and measured in different ways
and their different values can differ significantly. The effective
saturation mobility µeff is a particularly useful definition for
circuit designers. It serves as a figure of merit for the charge
transport efficiency, including the effects of a transistor’s
source contact and drain contact interface:

µeff =
2L

WCox

d2ID,sat

dV 2
GS

, (5)
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where L is the channel length, W is the channel width, Cox is
the specific gate capacitance, VGS is the gate-source voltage,
and ID,sat is the drain current in the saturation regime.

The transit frequency ft of a TFT is a second figure of
merit for its performance. In extension of µeff , it includes all
parasitics of the TFT device, such as the gate capacitance and
the gate, source, and drain resistances. The transit frequency
is where the short circuit gain h21 drops to unity. It can be
expressed in terms of the TFT’s transconductance gm and gate
capacitance CG:

ft =
gm

2πCG
. (6)

The ring oscillator stage delay τ , which can be calculated
from a ring oscillator’s frequency of oscillation fosc (see
Section III-C), is a figure of merit that includes TFT device and
chip level parasitics, such as interconnect. This is discussed in
the following.

Wireless applications require fast devices, because anten-
nas are prohibitively large at lower frequencies. High-speed
transistor devices alone, however, are not sufficient to make
flexible devices for actual applications. A whole ecosystem
of compatible flexible components is required. Systems and
devices usually require flexible power supplies, sensors, but-
tons, displays, antennas, and packaging. Figure 3 provides
examples of flexible components in one compatible ecosystem
[5], [6]. This overview also illustrates how flexible electronics
require highly interdisciplinary research, especially in the
domains of physics, chemistry, material science, electronics,
and engineering in general.

Today, flexible devices can be realized in a number of
ways. Among other things, they differ in the required process
temperatures and thus in the compatible substrates. For exam-
ple, only few types of printed electronics can be fabricated
on a piece of paper, since paper is not stable at higher
processing temperatures and because it has a very rough
surface. Polyimide is a popular substrate for printed as well
as for vacuum-processed flexible electronics, because of its
smooth surface and relatively good temperature stability up to
around 230°C.

The main categories of flexible electronics are compared in
Table I, and their primary characteristics are discussed in the
following sections.

A. Conventional Rigid Components on Flexible PCB

The technology mentioned in this subsection is not a flexible
electronics technology, but rather a flexible packaging tech-
nology. Yet, it still deserves a mention in the context of this
article, because of its maturity, cost efficiency, and usefulness
for many practical applications.

Conventional rigid integrated circuits and electronic com-
ponents can be so small, that from a macro-perspective they
can be used to make devices that appear to be flexible. This
can be achieved by using flexible packaging and flexible
printed circuit board technologies. The technology of flexible
printed circuit boards [7], [8] is very affordable and has been
available for many years. It is based on a stack of polyimide,
copper, and adhesive layers. It is readily available with 1 to

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Fig. 3. Examples of flexible devices and sensors of a flexible ecosystem: (a)
a 6 cm2 organic LED, (b) a 24 V disposable battery, (c) a 24 V rechargeable
battery, (d) a 5 cm2 piezoelectric speaker, (e) a resistive temperature sensor,
(f) a 2 × 2 array of organic photodiodes for motion detection on two axes,
(g) solar power module stacked with a flexible printed nickel-metal hydride
(NiMH) rechargeable battery and an organic photovoltaic device (OPV), (h)
a textile antenna with copper wires woven into the fabric, and (i) an inkjet
printed circuit board based on a polyethylene terephthalate (PET) substrate.
[5], [6] (a) – (f) © 2013 IEEE. Reproduced, with permission, from [5]. (g) – (i)
© 2016 IEEE. Reproduced, with permission, from [6].

4 copper interconnect layers. It can be ordered in different
thicknesses, which cover different application and bendability
requirements. In its standard configuration, a 1 layer flexPCB
has a thickness of around 93 µm. A standard 4 layer configura-
tion is around 285 µm thick. Standard electronics components
can be soldered to a flexPCB. The result are semi-flexible
electronics that are bendable in certain areas, while being
stiff in relatively small areas around the rigid components.
This technology can obviously achieve very high performance
and is frequently used for highly compact 3D integration,
for example in photo cameras. However, such a flexPCB has
to be relatively large and is not very reliable when being
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TABLE I
COMPARISON OF FLEXIBLE ELECTRONICS TECHNOLOGIES.

Organic
TFT

Metal-Oxide
TFT

Carbon
TFT

a-Si:H
TFT

LTPS
TFT

Thinned Si
Transistor

Technology Readiness - + - - ++ +/- ++

Suitable for RF Application +/- + ++ - + ++

Cost / Complexity ++ + + + +/- - -

Substrates paper, plastics plastics plastics polyimide polyimide silicon

Types p-type, (n-type) n-type, (p-type) p-type, n-type, n-type, p-type n-type, p-type n-type, p-type
ambipolar

Mobility n-Type Device 2 cm2/(V·s) 75 cm2/(V·s) 50 cm2/(V·s) 1 cm2/(V·s) 200 cm2/(V·s) 400 cm2/(V·s)

Mobility p-Type Device 5 cm2/(V·s) 0.5 cm2/(V·s) 150 cm2/(V·s) 0.1 cm2/(V·s) 100 cm2/(V·s) 100 cm2/(V·s)

Mobility Ambipolar Device 120 cm2/(V·s)

Transit Frequency 40 MHz 2.1 GHz 1 MHz 100 MHz ≥ 100 GHz
(typ. 100 MHz)

Electrical Stability - - +/- + + + ++

Mechanical Durability + + + - - +

Channel Scalability +/- + ++ + - ++

bent repeatedly, because very high local stress is induced
in the solder joints and substrate areas adjacent to the stiff
components. To mitigate this, flexPCBs can be re-enforced
locally, which however reduces bendability.

B. Flexible Organic TFTs

Organic semiconductors can be deposited and structured
on rigid and flexible substrates through thin and thick-film
methods. A variety of semiconducting materials is studied
today. P-type materials perform best [9]. N-type materials
are also possible and widle researched [10], [11]. In organic
technologies, field-effect transistors as well as heterojunction
transistors can be made. The most popular and fast p-type
organic semiconductors are pentacene [12] and rubrene [9],
which are not stable in air. One very popular n-type organic
semiconductor is fulleren C60 [12], [13].

In combination with compatible conductive and dielectric
materials, which are not necessarily truly organic, circuits
can be integrated. Thick-film technologies, in particular, are
compatible with many substrates. Most often, plastic films
and paper are used. A drawback of organic electronics is that
they tend to require large supply voltages. Tens of volts is not
uncommon as supply voltage for organic circuits [14], [15].
Effective carrier mobilities in the range of 5 cm2/(V·s) and
transistor transit frequencies up to 40 MHz are reported in the
literature [9], [13].

Before organic circuits will achieve wider use, organic
semiconductors’ speed, stability in air, and required supply
voltages have to be improved.

C. Flexible Metal-Oxide and Metal-Chalcogenide TFTs

Certain metal-oxides (MOs), metal-chalcogenides, and their
alloys behave like semiconductors and can be deposited by
thin-film technologies. The most prominent examples are
indium gallium zinc oxide (IGZO), indium tin oxide (ITO),

indium zinc oxide (IZO), and molybdenum disulfide (MoS2).
Among the compatible flexible substrates are temperature
stable plastic films, such as polyimide. The substrates have
to provide a good tradeoff between temperature stability and
elasticity. In general, semiconductor performance in this class
can be improved by increasing the annealing temperatures,
which is primarily limited by the stability of the substrate
that is used. Effective carrier mobilities up to 76.8 cm2/Vs
and transistor transit frequencies up to 2.1 GHz have been
reported for flexible polyimide films [16], [17]. P-type MO-
semiconductors, including nickel oxide (NiO), exist but have
inferior performance [18]. Therefore, MO-TFT technologies
are considered to be n-type only. The combination of MO-
TFTs with organic technologies, amorphous silicon (a-Si)
technologies, and carbon nanotube (CNT) based technologies
is the subject of research [19], [20] to develop hybrid-CMOS
technologies.

Among flexible electronics technologies, MO-technologies
provide the most promising compromise among speed, avail-
ability, and cost for wireless communication.

D. Flexible Carbon Allotrope and Carbon Nanowire TFTs

Some carbon allotropes and carbon nanowires can have
semiconducting properties. Buying ready-made and highly
pure solutions of semiconducting allotropes and nanowires
has been possible for several years. Still, structuring transis-
tor devices from these materials remains very challenging.
The footprint of carbon-based transistor devices is usually
very small. The carrier mobilities in rigid carbon nanotubes
100,000 cm2/(V·s) and graphene 200,000 cm2/(V·s) exceed
that of crystalline silicon 1,400 cm2/(V·s) by far. Graphene
based TFTs, however, significantly fall behind these very high
carrier mobilities reaching roughly 20,000 cm2/(V·s) [21].
Note that the effective mobility of graphene based TFTs, e.g.
116 cm2/(V·s) [22], is much lower than their carrier mobility.
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Current TFTs based on carbon nanotubes (CNTs) also lag
behind their ideal values and achieve an effective mobility
≤ 150 cm2/(V·s) [23]. If the effective mobilities of CNT-
and graphene-based TFTs can be improved toward the values
promised by their pure base materials, transit frequencies in
the high gigahertz-range can be expected.

E. Flexible Silicon TFTs

Flexible TFTs can be made from thin films of amor-
phous silicon (a-Si), hydrogenated amorphous silicon (a-
Si:H), polysilicon (poly-Si), nanocrystaline silicon (nc-Si),
and low-temperature polycrystalline silicon (LTPS). These
technologies can provide n-type as well as p-type devices, and
CMOS circuits are possible. They are mature and available
in consumer electronic products, mainly on rigid substrates
[24]. Their major commercial application lies in active-matrix
liquid crystal displays (AMLCDs). All of them are, with
reduced performance, reduced uniformity, and reduced scal-
ability, compatible with flexible substrates. Among them, a-Si
is the slowest with carrier mobilities around 0.5 cm2/(V·s)
[25]; a-Si:H has reportedly shown mobilities in the range of
1.0 cm2/(V·s) [26], [27]; nc-Si has been reported to achieve a
mobility of 18 cm2/(V·s) [28]; and LTPS, which is the latest
and fastest Si-TFT technology, achieves mobilities in the range
of 50 – 100 cm2/(V·s) [29]. Technologies using a-Si and a-
Si:H can have a good stability [30]. LTPS technologies are
relatively complex, cannot be scaled well, and lack uniformity
across large areas when compared to a-Si TFTs and MO-TFTs
[31]–[33].

F. Flexible Thinned Monocrystalline Silicon Transistors

Conventional integrated silicon circuits are flexible after
they have been thinned to a few tens of micrometers [34].
This category of flexible electronics benefits from the vast
experience gained in the past decades. However, the handling,
thinning, packaging, and modeling of the transistor character-
istics are still challenging and require further research. Model-
ing these devices is challenging, because during thinning, the
transistor characteristics may significantly change. Effective
mobilities are in the range of 400 cm2/(V·s) to 800 cm2/(V·s)
for n-type transistors and in the range of 100 cm2/(V·s) to
200 cm2/(V·s) for p-type transistors. Reported transit frequen-
cies ft exceed 100 GHz. Among fully flexible technologies,
this is the most mature and fastest. However, it is by far the
most complex and expensive one.

G. Device Cross-Sections

The transistor cross-section and layout are crucial for device
performance, because they influence many characteristics. Fig-
ure 4 shows different cross-sections of TFTs that are studied
and used. Figure 5 illustrates the dominant parasitics and their
rough origins in a cross-section.

One major parasitic stems from the capacitances CGS and
CGD that are mainly caused by the overlap LD of the gate and
the source/drain metals. These parasitic gate capacitances have
to be minimized by minimizing LD, which can be achieved

through advanced lithography. Unfortunately, reducing LD can
also degrade device performance, because it increases the
parasitic contact interface resistances RcS and RcD. Conse-
quently, an optimized tradeoff has to be found. Metal electrode
resistances RS, RD, and RG can be improved by using wider
and thicker metals; however, this can impact other circuit
and device characteristics, such as interconnect capacitances,
bendability, and mechanical stability.

The cross-sections in Fig. 4 are all relevant to device
performance optimization. The different orders of layers come
with varying layer interfaces. Depositing a gold drain contact
on top of an IGZO layer (staggered drain contact, Figs. 4 (a)
and 4 (d)) does not result in the same interface characteristics
as depositing an IGZO layer on top of a gold drain contact
(coplanar drain contact, Fig. 4 (b) and 4 (e)). Therefore, chang-
ing the layer sequence will improve or degrade for example
RcD.

Using two gates in a split configuration Fig. 4 (c) provides
electrical control over the contact region and can improve
performance. Using two gates in a double-gate configuration
Fig. 4 (f) can improve the performance of the channel material.

The channel length is usually defined by lithography and
can be reliably structured down to about 0.5 µm in MO-
TFTs. A special case in this regard is the quasi-vertical TFT
structure in Fig. 4 (h). TFTs with this cross-section can be
fabricated with extremely short and precise channel lengths,
because the channel length is defined by the thickness of a
spacing layer, which can be controlled much better than the
lateral dimensions resulting from an etching step. Achieving
similarly short, repeatable, and precise channel lengths with
the cross-section in Fig. 4 (a) requires structuring methods that
are much more expensive and timeconsuming than lithography.
For example, focused ion beam (FIB) etching can be used
with the cross-section in Fig. 4 (a) to structure a channel with
lengths down to 160 nm [42].

The truly vertical TFT structure in Fig. 4 (g) is mostly
specific to organic TFTs and graphene-based hetero-junction
TFTs. It enables the use of very thin and consistent layers in
the channel.

Figure 6 provides a top view of a bottom-gate TFT (refer
to Fig. 4 (a)).

H. Transistor Performance
Tables II and III detail a selection of transit frequencies

and mobilities that have been reported in the literature for
organic, metal-oxide, amorphous silicon, and carbon-based
TFT transistor devices.

The tables show that devices made from the same semicon-
ductor can greatly vary in performance. This is obviously due
to the huge number of process parameters as well as different
device geometries. The fastest organic transistor has an ft of
40 MHz [13], which is not sufficient to build an amplifier
at 13.56 MHz. As a rule of thumb, ft should be ten times
larger than the target frequency of operation. Consequently,
organic transistors cannot be used to improve the wireless
communication range of active RFID- and NFC-tags.

Metal-oxide TFTs with a transit frequency ft of 135 MHz
for IGZO and 2.1 GHz for ITO have been reported [17],
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Fig. 4. TFT cross-sections. (a) Bottom-gate TFT with staggered source and drain contacts, (b) bottom-gate TFT with alternating contacts (ACTFT) [35],
(c) bottom-gate TFT with a split gate [36], (d) top-gate TFT with staggered source and drain contacts [37], (e) top-gate TFT with coplanar contacts, (f)
double-gate TFT with top- and bottom-gate electrodes [38], (g) vertical TFT with a current flow that is perpendicular to the layers of the transistor [39], and
(h) quasi-vertical TFT [40], [41].

Gate

SourceDrain RSRD

RG

CGD

RcSRcD

CGS

LD LD

Fig. 5. Dominant parasitics of TFTs that can be optimized by the transistor
layout or cross-section. Here, CGS and CGD are the gate-source and gate-
drain capacitances, RcS and RcD are the contact interface resistances, RS and
RD are the contact metal resistances, and RG is the gate metal resistance.

Fig. 6. A top view of a bottom-gate IGZO TFT device on a polyimide
substrate with staggered contacts, a 1 µm long channel, and an ft of 47MHz.
[5] © 2013 IEEE. Reproduced, with permission, from [5].

[54]. These technologies are fast enough for active wireless
communication in RFID- or NFC-tags. Silicon thin-film tran-
sistors with mobilities exceeding those of MO-TFTs have been
reported [59], [62], [64]. They also are viable for use in active
RFID- and NFC-tags. However, high-performance silicon thin-
film transistors tend to have a longer channel than MO-TFTs,
by a factor of about 50. The longer channel is usually required
to form the necessary crystalline structure in the silicon layer,
limiting scalability of these technologies.

Equation (5) shows that the performance of a TFT in terms
of µeff is better when the channel is longer. In contrast, the
performance in terms of transconductance gm and thus ft (see
Eq. (6)) of the TFT is better when the channel is shorter.
Since a high ft is a prerequisite for fast circuit operation, the
scalability of the channel length is an important prerequisite
for future improvements.

III. METAL-OXIDE RF CIRCUITS

As discussed in the preceding and summarized in Tables II
and III, metal-oxide circuits provide a good compromise
among speed, availability, and cost for many applications,
including wireless communication systems. The competing
technologies suffer from high cost in the case of thinned
silicon, low performance in the case of organic and a-Si TFTs,
non-uniformity across a large area and limited scalability in the
case of LTPS, and lack of maturity in the case of carbon based
TFTs. As a result, the research and development of metal-
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TABLE II
TRANSISTOR DEVICE PERFORMANCE REPORTED IN THE LITERATURE.

Category Semiconductor Type Ref. Year L in µm ft in MHz µeff in cm2

V·s

Organic TFT DNTT p-type [43] 2018 0.60 6.7 2.00

C8–DNBDT–NW p-type [44] 2018 3.00 20.0 2.10

C60 n-type [13] 2018 0.20 40.0 0.06

P(NDI2OD–T2) n-type [45] 2016 1.75 20.0 0.82

C10-DNTT p-type [36] 2014 2.00 20.0 0.40

[46] 2014 2.00 19.0 2.50

Rubrene p-type [9] 2013 4.50 25.0 5.00

C60 n-type [12] 2011 2.00 27.7 2.22

Pentacene p-type [12] 2011 2.00 11.4 0.73

Metal Oxide TFT IGZO n-type [42] 2020 0.16 6.0 4.00

[40] 2019 0.20 20.0 6.57

[47] 2019 20.00 47.90

[35] 2018 0.60 49.2

[48] 2018 0.28 80.0 1.10

[49] 2018 100.00 20.90

[50] 2017 20.00 9.17

[16] 2017 10.00 76.80

[51] 2017 5.00 20.60

[52] 2015 20.00 12.70

[41] 2015 0.30 1.5 0.20

[38] 2014 7.50 5.6 9.50

[53] 2014 5.00 11.97

[54] 2013 0.50 135.0 7.50

[5] 2013 1.00 47.0

[55] 2012 2.50 10.7 14.40

ITO n-type [17] 2019 0.16 2100.0 26.00

IZO n-type [56] 2020 1.50 23.0 1.40

ZO n-type [57] 2019 2.00 13.00

TZO n-type [58] 2016 50.00 66.70

DNTT: dinaphtho[2,3-b:2‘,3‘-f]thieno[3,2-b]thiophene; C8-DNBDT-NW: 3,11-dioctyldinaphtho[2,3-d:2’,3’-d’]benzo[1,2-
b:4,5-b’]dithiophene; C60: Buckminsterfullerene; P(NDI2OD-T2): poly[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-
bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene); C10-DNTT: 2,9-di-decyldinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene.

oxide TFT circuits has received a great deal of attention in
recent years [71]–[79].

A. TFT Modelling and Computer Aided Design
TFTs are mainly modeled in two different ways for two

different purposes. First, the device geometry and materials
are modeled with physical models to predict device behavior
and characteristics. Second, device behavior is modeled for
circuit simulation. The models for circuit simulation have to
be much faster and again are either physics-based or behavioral
models. Dedicated physics-based, scalable models have been
developed and are widely available for silicon TFTs [80] as
well as for organic TFTs [81]–[83]. This, however, is not
the case for metal-oxide TFTs and carbon-based transistors.
Dedicated models are still being developed for those transis-
tor types [84]. Meanwhile, metal-oxide TFTs are frequently

modeled for circuit simulation by fitting SPICE MOS-FET
Level 3 [85] or models for amorphous silicon TFTs [86], such
as the HSPICE Level 61 RPI a-Si TFT Model, to measured
device characteristics. Simultaneously, new tools and design
flows that are optimized for the special requirements of flexible
circuits are being developed [87].

B. Amplifiers

Wireless communication requires fast amplifiers. The trans-
mitting side demands a power amplifier that is matched to
an antenna to broadcast a radio signal into the air. This
amplifier has to operate at the carrier frequency of the wireless
transmission. A very important frequency for this purpose
is fc = 13.56 MHz, because it is a free ISM-band used
by standardized RFID- and NFC-tags. The receiving side
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TABLE III
TRANSISTOR DEVICE PERFORMANCE REPORTED IN THE LITERATURE.

Category Semiconductor Type Ref. Year L in µm µeff in cm2

V·s

Metal Oxide TFT + IGZO n-type [59] 2019 6.00 13.52

+ Si TFT LTPS p-type [59] 2019 6.00 81.76

Metal Oxide TFT + IGZO n-type [60] 2011 10.00 16.30

+ Si TFT LTPS p-type [60] 2011 10.00 69.00

Metal Oxide TFT + IGZO n-type [61] 2017 3.60 10.10

+ Si TFT LTPS p-type [61] 2017 100.00 78.30

Si TFT LTPS n-type [62] 2005 200.00

p-type [62] 2005 100.00

nc-Si:H n-type [63] 2009 8.00 6.42

[64] 2006 50.00 450.00

p-type [64] 2006 50.00 100.00

n-type [28] 2005 45.00 30.00

a-Si:H n-type [27] 2017 100.00 1.10

a-Si n-type [65] 2010 5.00 0.33

[66] 2007 60.00 0.25

Carbon TFT CNT p-type [67] 2019 50.00 80.00

[68] 2019 2.00 23.40

[69] 2018 2.00 52.60

n-type [69] 2018 2.00 50.00

ambipolar [70] 2015 5.00 15.00

p-type [23] 2005 7.00 150.00

Graphene ambipolar [22] 2012 10.00 116.00

needs a low-noise amplifier (LNA) matched to an antenna to
pick up and amplify signals. The range of a wireless system
is directly connected to the power the transmitting power
amplifier outputs and the sensitivity/gain of the receiving LNA.

Important performance characteristics of an amplifier are
the voltage gain AV , the -3 dB-bandwidth BW, and the gain-
bandwidth product GBW.

AV =
vout

vin
, (7)

where vin is the input signal amplitude and vout is the
output signal amplitude. Toward high frequencies, the gain
of amplifiers drops. The -3 dB-bandwidth BW of an amplifier
is the frequency where the gain AV has dropped by 3 dB
compared to the gain in the flat band. The gain-bandwidth
product GBW is defined as

GBW = AV · BW. (8)

It tends to be constant for changing values of AV if the
technology and amplifier topology remain the same, assuming
that the amplifier is well designed, meaning that an amplifier
with a larger gain AV has an accordingly smaller bandwidth
BW. Consequently, the GBW is a good figure of merit to
compare technologies, when the topology of the amplifiers
is the same or similar.

Figure 7 presents the basic high-speed amplifier topologies
that can be realized in metal-oxide TFT technologies with

up to three transistors. These are the most suited for the
first input stage of wireless receivers. The common-source
amplifier in Fig. 7 (a) is simple yet effective, and it requires
the smallest supply voltage. The cascode amplifier in Fig. 7 (b)
achieves a higher gain-bandwidth product than the common-
source amplifier and is tunable by adjusting the DC voltage
Vcasc. It, however, requires roughly twice the supply voltage
and consumes more power. The Cherry-Hooper amplifier in
Fig. 7 (c) uses positive feedback via TFT T6 to achieved
the highest gain-bandwidth product. It consumes the most
power and requires careful design and optimization. A comple-
mentary inverter is not among the basic amplifier topologies,
because metal-oxide technologies provide only n-type TFTs.

Figure 8 depicts two basic high-gain amplifier topologies
with three active transistors. They provide a high gain at a
lower gain-bandwidth product, compared to the topologies
in Fig. 7. They are, for example, suited for sensor readout
circuitry and simple processing tasks.

The differential pair amplifier in Fig. 8 (a) has a high
differential gain and can be tuned by adjusting the voltage
Vtail that controls the tail current source T1. TFTs T4 and T5

are used instead of load resistors and are in a diode-connected
configuration. Differential pair amplifiers are frequently em-
ployed as input stage for operational amplifiers and for sensor
readout circuitry.

The pseudo-CMOS (pCMOS) inverter in Fig. 8 (b) has a
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Fig. 7. Basic RF voltage amplifier circuits with only resistors and n-type
TFTs: (a) Common-source amplifier, (b) cascode amplifier, and (c) Cherry-
Hooper amplifier with positive feedback [88].
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Fig. 8. Basic high-gain voltage amplifier circuits with only n-type TFTs: (a)
Differential pair and (b) pseudo-CMOS amplifier [89]. Transistors T4, T5,
and T6 are used as an active load in the diode-connected configuration.

high gain and large output swing and is suited for digital logic
circuits. It is often used for simple processing tasks. However,
it consumes more power and has slower switching speeds
when compared to the common-source amplifier in Fig. 7 (a),
which can also be used as digital inverter.

As Fig. 8 shows, the load resistors (refer to R1, R2, R3,
and R4 in Fig. 7) in amplifier circuits can be replaced by
active loads (T4, T5, and T6), i.e., diode-connected TFTs. This
method is prominent in MO-TFT technologies, because many
do not feature a high-resistance layer for the area-efficient
implementation of passive resistors. The technique comes at
the cost of a degraded linearity of the amplifiers [90], [91].

The ability to integrate large resistances is necessary for low
power consumption as well as for bias networks of amplifiers
and circuits in general. Figure 9 details biasing schemes that
are used in flexible MO-technologies, which do not feature a
high-resistance layer. Figure 9 (a) shows diode-connected TFT
T1, with a long channel length to achieve a high impedance in
the bias network. The impedance, however, is asymmetric for
the positive and negative half-waves of the signal. The DC bias
itself is defined by R1, R2, and the supply voltage. Stacks of
long-channel diode-connected TFTs appear in Fig. 9 (b). The
DC bias is defined by the dimensions of T2, T3, T4, and the

(a) (b) (c)
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Fig. 9. Biasing schemes to overcome the lack of a high-resistance layer. (a)
Diode-connected TFT, (b) stacks of diode-connected TFTs, and (c) oppositely
stacked diode-connected TFTs [90].
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Fig. 10. (a) Contacted die and (b) frequency response of a flexible Cherry-
Hooper amplifier. About one third of the core area is used by one capacitor
(the area at the bottom), which is part of the biasing scheme (compare [92]).

supply voltage. Figure 9 (c) illustrates the use of oppositely
stacked diode-connected TFTs [90] as high impedance in the
bias network. The latter scheme does not need to use long
channel devices. Instead, it exploits the drain current leakage
of transistors T5 and T6. It can be used to integrate extremely
high impedances and can be employed only in technologies
that have appropriately "large" drain currents at VGS = 0,
which would usually be considered an unwanted parasitic.

Figure 10 shows the die and frequency response of a Cherry-
Hooper amplifier [92]. It has a gain-bandwidth product of
about 50 MHz, which means it has a voltage gain of 11 dB
in the important 13.56 MHz ISM band. Table IV summarizes
the performance of flexible MO-TFT amplifiers reported in the
literature.
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TABLE IV
A SELECTION OF REPORTED GAIN BANDWIDTH PRODUCTS (GBWS) OF FLEXIBLE AMPLIFIERS.

Category Semiconductor Ref. Year Topology VDD in V GBW in MHz Gain in dB

Metal Oxide TFT IGZO [92] 2020 Cherry-Hooper 8 49.35 19.38

[92] 2020 4-Stage Common-Source 8 33.43 28.90

[93] 2019 Operational Amplifier 15 0.28 29.54

[94] 2019 Operational Amplifier ±10 7.50 23.52

[95] 2018 Operational Amplifier 10 0.20 10.00

[96] 2018 Operational Amplifier 13 0.09 24.90

[97] 2018 Operational Amplifier 10 0.04 22.00

[86] 2017 Cherry-Hooper 6 7.16 9.50

[98] 2017 Operational Amplifier ±10 0.01 14.00

[99] 2015 Operational Amplifier ±15 0.10 24.50

[100] 2015 Operational Amplifier 6 0.22 19.00

[101] 2014 Common-Source 6 0.56 17.00

[101] 2014 Cascode 6 3.91 25.00

[102] 2014 Cherry-Hooper 6 11.59 10.40

[102] 2014 2-Stage Cherry-Hooper 6 18.50 33.30

[103] 2014 Operational Amplifier 5 0.08 22.50

[104] 2013 Operational Amplifier 5 0.93 18.70

[85] 2013 2-Stage Cascode 6 9.17 10.00

[85] 2013 3-Stage Common-Source 6 2.37 10.00

[55] 2012 Cascode 5 2.06 7.80

[55] 2012 Common-Source 5 2.63 6.80

Hybrid Complementary IGZO + LTPS [20] 2019 Operational Amplifier ±20 68.55 50.70

Metal Oxide TFT + Si TFT [59] 2019 CMOS Inverter 8 11.40

Si TFT a-Si:H [25] 2010 Operational Amplifier 25 0.27 42.50

C. Oscillators

Oscillator circuits are required for wireless communication
to synthesize carrier, baseband, and modulation frequencies.
Ring oscillators, in particular, are a widely used and convenient
circuits to verify the performance of a technology. Their design
is relatively simple, their output frequency fosc is easy to
characterize, and their stage delay τ can be directly calculated
from the observed frequency of oscillation:

τ =
fosc

2 · n
, (9)

where n is the number of stages.
The ring oscillator topology can be easily implemented in

many technologies and permits the comparison of flexible
technologies. Many parasitic layout effects are automatically
included in these comparisons. For example, a technology that
lacks low-ohmic low-capacitive interconnect layers will not be
able to produce a fast ring oscillator, even if the transistors
promise excellent performance by having a high ft. Thus,
the gate delay τ of ring oscillators has become a common
performance benchmark in the flexible domain and others [83].
Table V reviews flexible ring oscillator gate delays reported
in the literature.

Ring oscillators must have an odd number n of inverting
stages. The shortest possible ring oscillator has three stages.
From Table V and Eq. (9), it follows that the fastest MO-
TFT three-stage ring oscillator using the reported technologies
[105] oscillates at 15.19 MHz and barely covers the free ISM
band at 13.56 MHz. However, in a real system, a ring oscillator
with five or more stages is preferable, because ring oscillators
with more stages operate more reliably.

IV. WIRELESS APPLICATIONS IN FLEXIBLE
TECHNOLOGIES

In the past decade, flexible technologies have made great
advances. Their speed and reliability have reached a point
where wireless applications begin to become realistic. At
the same time, the achievable complexities and variety of
compatible flexible components, such as sensors, actuators,
batteries, and solar cells have greatly increased. The Internet
of Things (IoT), RFID-tags, and NFC-tags will influence many
future applications. Wireless transceivers will be required to
enable data transmissions at all times. Flexibility will be the
enabler for seamless integration into our daily lives.

The most challenging technical component for flexible
wireless systems is the transmitter (Tx). It has to provide
power gain at radio frequencies. To be able to communicate
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TABLE V
REPORTED RING OSCILLATOR AND INVERTER PERFORMANCE.

Categroy Semiconductor Reference Year VDD in V τ in ns
1/2τ = fosc/n

in MHz

Metal Oxide TFT IGZO [106] 2019 5 230 2.17

[16] 2017 20 108 4.63

[107] 2017 4 48 10.32

[51] 2017 20 21 23.56

[50] 2017 10 1370 0.36

[108] 2016 20 106 4.73

[109] 2016 10 29 17.29

[110] 2015 6 3199 0.16

[105] 2015 20 11 45.57

[111] 2014 20 58 8.59

[112] 2013 6 17361 0.03

[113] 2011 20 479 1.04

[114] 2011 22 17 29.41

[115] 2010 25 48 10.50

IZO [116] 2017 5 344 1.45

Hybrid Complementary IGZO + C60 [117] 2008 10 500000 0.001
MO-TFT + Organic TFT

Si TFT a-Si:H [118] 2009 6 3333 0.15

Organic TFT DNTT [43] 2018 3 79 6.33

DNTT + PDI8CN2 [119] 2015 12 66667 0.01

CP-DIPS:PTAA [120] 2015 20 71429 0.01

Carbon TFT CNT [68] 2019 3 23 21.74

[69] 2018 6 6 87.72

PDI8CN2: N,N’-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide);
CP-DIPS:PTAA: blend of 6,13-bis[(cyclopropyldiisopropylsilyl)ethynyl] pentacene and poly(triarylamine).

with standard devices, such as RFID, NFC, and IoT devices,
the requirement is fc ≥ 13.56 MHz. Close proximity links are
also frequently operated at fc = 125 kHz.

The second most challenging and final technical component
for flexible wireless systems is the receiver (Rx). It must
have a high sensitivity to wireless signals at the previously
mentioned carrier frequencies. The receiver is simpler than the
transmitter, because it does not have to provide a high gain
at the carrier frequency as long as it does not add noise and
efficiently demodulates the baseband signal [90]. Afterward,
the baseband signal, which is at a much lower frequency, can
be easily amplified. However, for the highest sensitivities and
thus communication ranges, high-speed transistors with gain
at the carrier frequency are needed.

Flexible wireless receivers have been demonstrated in dif-
ferent technologies. For example, a quadrature amplitude
modulation (QAM) receiver front end for 2.45 GHz ISM band
and a 5 GHz six-port receiver front end based on flexible
graphene diodes was shown [121], [122]. On a flexible thinned
silicon substrate, a power amplifier with 10 dB gain at 5.5 GHz
was introduced [121], [123] (see Fig. 11). In metal-oxide
technologies amplitude modulation (AM) receivers up to a
carrier frequency of 20 MHz have been demonstrated [6], [90],

[124]. Several RFID and NFC tags and transponder chips
have been demonstrated in flexible organic technologies [78],
[125]–[128] as well as in flexible metal-oxide technologies
[33], [109], [129]–[135]. Some of these solutions are powered
by a 13.56 MHz conventional base station proximity field.
However, they are all similar to passive, chipless remote
sensing solutions [136] in the sense that they do not have an
active circuit block operating at the carrier frequency, given
the limited performance of the technologies that are used.
Typically the only flexible component that sees the full carrier
frequency is the rectifier, which harvests the energy required
to power up the tag or transponder.

Two of the reported metal-oxide chips for wireless tags
stand out [109], [129], because they are compatible with the
data rates required by the ISO NFC standards. They are able
to handle standardized baseband communication in wireless
tags. Figure 12 shows such an NFC transponder chip. The
work in [129] is also of interest since it features a frequency
divider that directly takes the 13.56 MHz carrier frequency
as input and divides it down to the 847.5 kHz required for
the tag’s internal clock. As a consequence, the tag clock
is synchronized with the reader clock, which enables ISO-
compliant data transfer.
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Fig. 11. Silicon BiCMOS amplifier for 5 – 6 GHz thinned to 45 µm. (a) Die
photo. (b) Simulated (blue), measured not-thinned (orange) and measured
thinned (yellow) forward gain. [121], [123] © 2017 IEEE. Reproduced, with
permission, from [121].

(a) (b)

Fig. 12. (a) Flexible thin-film NFC transponder chip exhibiting data rates
compatible with ISO NFC standards, using self-aligned metal-oxide TFTs.
It has a footprint of 3.42 mm × 3.19 mm. (b) Substrate carrying the NFC
transponder chip at the top right (marked with a red border). [109] © 2016
IEEE. Reproduced, with permission, from [109].

V. FLEXIBLE WIRELESS MOISTURE SENSOR

In this section, as an example of the next generation
of flexible wireless electronics, an active flexible wireless
moisture sensor and details about its blocks illustrate how
flexible metal-oxide electronics can be used to realize an active
wireless sensor tag. This wireless sensor system was designed
and characterized by the authors. It distinguishes itself from
previous works, because it actively transmits sensor data via
a carrier frequency that is generated on-chip by the flexible
sensor itself.

A. System and Technology Overview

The device shown Figs. 1 and 13 is a fully integrated mois-
ture sensor with a wireless on-off-keying (OOK) transmitter
and an antenna. Many solutions to read out such sensors
would use proximity links of a few centimeters, such as RFID
and NFC, to read out data. In those cases, communication is
managed and driven by a base station or data reader. The
presented system, however, has the potential for a stand-
alone flexible wireless communication system with a matched
flexible receiver [90], [124]. Thanks to the active nature of
the wireless moisture sensor, it can achieve a larger range than
RFID- and NFC-based solutions. With expected improvements
of flexible TFT performance, the carrier frequency for the data
transmission of such sensors will increase, which will expand
the devices’ communication range, reduce antenna sizes, and
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Fig. 13. Prototype of a fully flexible, fully integrated moisture sensor with
an OOK transmitter on a 50 µm polyimide substrate. It has an area of 16 ×
16mm2 and includes (1) an OOK-modulator with a DCO, (2) an antenna, (3)
a moisture sensor, (4) a clocked comparator, (5) a latch, (6) a low-frequency
oscillator, and (7) supply voltage pads.

thus advance the equipment’s feasibility and attractiveness for
real-world applications.

The wireless moisture sensor was fabricated in a flexi-
ble IGZO TFT technology [1], [55] on a 50 µm polyimide
substrate. The semiconducting IGZO layer is deposited at
room temperature and its mobility exceeds 10 cm2/(V·s). It
features two interconnect layers [1] with moderate parasitics.
It does not have a high-resistance layer. Instead, the chromium
bottom-gate metallization is used to implement resistors. The
resistors are visible in Fig. 1 as gray areas. It can be seen that,
because of the lack of a high-resistance layer, the resistors
cover as much as half the active area. Circuit simulations and
optimizations have been done using a fitted amorphous silicon
TFT model [86].

The circuit consists of the moisture sensor, sensor readout
circuitry, and a wireless transmitter. The sensor readout is
performed by a pseudo-CMOS clocked comparator, latch, and
low frequency oscillator. The low frequency oscillator provides
a 50 kHz signal, which is used for two purposes. It generates
the baseband frequency and duty cycles the sensor read out
circuitry to save power. An even slower oscillator [137]
could be used to further reduce the power consumption. This
would however affect system latency. The wireless transmitter
consists of a digitally controlled oscillator (DCO), the OOK
modulator, and an antenna.

The DCO is used to generate the carrier frequency, and
it has an average frequency of oscillation of 1.36 MHz and a
digitally controllable tuning range of 15 %. This tunability can
be exploited to compensate for manufacturing variations, and it
can be used to realize an application with several channels. The
OOK modulator successfully modulates a 200 mVpp carrier
with the 50 kHz baseband signal and a modulation index of
around 50 %. The clocked comparator achieves 28 dB open-
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Fig. 14. System level of the wireless moisture sensor.

loop gain with a minimum input offset of 25 mV. To character-
ize the moisture sensor, a small drop of tap water is placed on
the device’s interdigitated electrodes. The water drop, covering
the sensor area of 0.44 mm2 raises the differential output
voltage from 0.28 mV to 1.60 V, which can easily be detected
by the comparator.

The system was specified for and characterized with a 5 V
supply. This supply voltage can be provided, for example, by
flexible printed batteries (refer to Figs. 3 (b) and 3 (c)), flexible
organic solar cells, and energy harvesting modules, such as the
solar power module in Fig. 3 (g).

The functional blocks of the wireless moisture sensor are
highlighted in Fig. 13. They are also shown on a simplified
system level in Fig. 14.

B. OOK Modulator With DCO Utilizing the Miller Effect

As shown in Fig. 15 (c), an uncommon approach has to be
taken to realize a digitally-controlled delay line with only an
n-type thin-film transistor. Each inverter stage consists of a
main TFT (L=4 µm), a slow TFT (L=10 µm), and two more
TFTs (L=5 µm). The slow TFT has a large parasitic capaci-
tance due to the Miller effect and provides sufficient gain to
the inverter stage. Conventional implementations of digitally
controlled ring oscillators have used controlled current sources
or switched capacitors Figs. 15 (d) and 15 (e), which are not
suitable for MO-TFT technologies, because these solutions are
not compatible with n-type-only logic or require a very large
area, while achieving only small output swings.

Figure 16 depicts the circuit and its transistor-level sche-
matic, including the measurement configuration. The carrier
signal is modulated by the 50 kHz baseband signal and has a
300 mV output swing (VOn) during the baseband on-state. The
output swing (VOff ) drops below 100 mV in the baseband off-
state. The baseband waveform and OOK-modulated waveform
appear in Fig. 17 (a). The measured waveform includes a
largeswing baseband frequency component, which is filtered
by the antenna. By adjusting inputs D0, D1, and D2, the
oscillation frequency and thus the carrier frequency can be
tuned in a range of 15 % around the center frequency of
1.36 MHz. The oscillation frequency tuning with the inputs
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Fig. 15. On-off keying modulator with a digitally controlled ring oscillator.
(a) System level, (b) transistor-level implementation of the tunable inverter
stage, (c) simplified equivalent circuit of the tunable inverter stage, (d)
incompatible conventional implementation with a controlled current source,
and (e) incompatible conventional implementation using a switched capacitor.

is shown in Fig. 17 (b). The figure shows that the originally
simulated tuning range of 29 % was wider than the actually
achieved one.

C. Pseudo-CMOS Clocked Comparator

Figure 18 (a) shows the fabricated pseudo-CMOS com-
parator block. The transistor-level schematic of the clocked
comparator is given in Fig. 18 (b). It employs the high-
gain pseudo-CMOS structure, which enables a cross-coupled
topology that obtains a high open-loop gain. The reset switches
M3’ and M4’ driven by the clock CLK connect the outputs
of the differential amplifier to the "Tail" node. This realizes
a stable reset function with only n-type TFTs. A dummy
load is used on the left output to improve the matching and
thus the offset voltage of the comparator. The measurement
configuration and results are in Fig. 19, confirming that the
clocked comparator operates correctly with an input swing of
only ±100 mV. Fig. 19 (c) describes the frequency response
and offset voltage of the clocked pseudo-CMOS comparator.
The open-loop gain reaches 28 dB, with an input offset voltage
of ≤ 75 mV.

The clock signal CLK is generated by a low-frequency
oscillator. Implementing the synthesis of a low frequency
is challenging in this technology. A typical analog solution
requires a large chip area. A digital implementation based on
a counter consumes a considerable amount of power and chip
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area. Therefore, the clock synthesis is realized by two digitally
controlled ring oscillators with relatively high frequencies of
oscillation f1 and f2. A latch is then used to pick up the much
lower beat frequency fbeat = fCLK = f1 − f2 ≈ 50 kHz,
which is the interference of the outputs of the two tunable
ring oscillators.

D. Moisture Sensor

The moisture sensor appears in Fig. 20. It consists of
a bridge structure with interdigitated electrodes detecting
open/short in the top metal layer and three resistors. When
the electrodes are open without moisture, the output node is
pulled down. The reference "Ref" is set to roughly 0.5 V, which
is the result of co-optimization with the clocked comparator.
The sensor is characterized by using a small drop of tap water.
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The water drop, covering the sensor area of 0.44 mm2 (see
Figs. 20 (c) and 20 (d)), raises the output from 0.28 mV to
1.60 V, which is then picked up by the comparator as shown
in Fig. 14.
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TABLE VI
COMPARISON OF PRESENTED FLEXIBLE WIRELESS MOISTURE SENSOR TO FLEXIBLE WIRELESS TAGS REPORTED IN THE LITERATURE.

Process
Category

TFT
Type(s) Ref. Year

Appli-
cation VDD

Carrier
Frequency

BW /
Data rate Coupling Remarks

Metal Ox. n-type This 2021 Sensor w/ 5 V 1.36 MHz ≈ 50 kb/s Inductive / Built-in oscillator for
work OOK Tx 15 % tuning Radio wave carrier frequency synthesis

Metal Ox. n-type [130] 2018 CAPID 0.3 V 2.00 MHz 890 b/s Capacitive
tag (external)

Metal Ox. n-type [131] 2018 CAPID ≈ 2.5V 1.00 MHz 5.8 kb/s Capacitive
tag (external)

Metal Ox. n-type [135] 2017 RFID 20 V 13.56 MHz 13.19 kb/s Inductive 148 kb/s @ 2 V
tag (external) pseudo-CMOS

Metal Ox. n-type [129] 2017 RFID / 3 V 13.56 MHz 105.9 kb/s Inductive Vbias = 6 V, CLK=847.5 kHz,
NFC tag (external) direct clock division of 13.56 MHz

carrier, ISO14443-A compliant

Metal Ox. n-type [33] 2015 RFID / 2 V 13.56 MHz 71.6 kb/s Inductive ISO15693 compatible
[132] NFC tag (external) datarates

Organic p-type [127] 2015 RFID 24 V 13.56 MHz 50 b/s Inductive With envelope detector
Organic n-type tag (external)

Organic p-type [138] 2014 Medical 2 V 13.56 MHz 3 Hz Inductive Back scattering
sensor (external)

Organic p-type [126] 2012 RFID 10 V 13.56 MHz 20.6 kb/s Inductive Code generator
Metal Ox. n-type tag (external) can operate with 3.75 V

Organic p-type [139] 2012 RFID 10 V 13.56 MHz 20.6 kb/s Inductive Code generator
Metal Ox. n-type [126] tag (external) can operate with 3.75 V

Organic p-type [78] 2009 RFID 14 V 13.56 MHz 787 b/s Inductive
tag (external)

Organic p-type [128] 2006 RFID 30 V 13.56 MHz 1 kb/s Capacitive First organic RFID tag
[140] tag (external)

RFID: radio-frequency identification; CAPID: capacitive RFID; NFC: near-field communication.
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Fig. 20. Moisture sensor block. (a) Dry moisture sensor die, (b) schematic
and measured output voltages of dry moisture sensor, (c) moisture sensor wet
by a drop of tap water, and (d) schematic and measured output voltages of
wet moisture sensor.

E. Conclusion for Wireless Moisture Sensor System

To date, such wireless sensor systems usually require exter-
nal carrier signal generation, because the technologies are gen-
erally too slow to generate, for example, a 13.56 MHz carrier

signal on-chip. The wireless moisture sensor discussed above
is one of the first attempts to make a fully integrated active
flexible wireless system in metal-oxide technology. Table VI
compares the presented wireless moisture sensor to previous
flexible wireless tags reported in the literature. As described
in the previous section, the moisture sensor can generate a
carrier signal of 1.36 MHz and would require a tenfold speed
improvement to operate in the free ISM band at 13.56 MHz. It
was fabricated in a technology that has an ft of 10.7 MHz [1],
[55]. As Table II shows, MO-TFT technologies with more than
a tenfold improvement have been demonstrated. Implementing
the presented wireless moisture sensor in one of those would
enable its operation at higher frequencies, facilitating the use
of free ISM bands and increasing the range of the wireless
moisture sensor, today.

VI. CONCLUSION AND OUTLOOK

Different flexible electronic technologies are currently being
researched and developed. Among them, the metal-oxide based
TFTs provide an attractive compromise for future wireless
applications, because they offer good performance, cost, scal-
ability, uniformity, and maturity.

The performance of flexible organic technologies falls far
behind that of metal-oxide technologies. Silicon thin-film tech-
nologies are promising, but they are more complex than metal-
oxide technologies and do not scale well. Carbon-based TFT
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technologies are also promising but lack maturity. Flexible
thinned silicon ICs electrically outperform the other flexible
technologies, but are also the most complex and expensive.

Complex analog and digital applications can be realized on
flexible substrates with up-to-date metal-oxide based thin-film
technologies. However, analog circuits for wireless communi-
cation require high operation frequencies, because otherwise
prohibitively large antennas are required or the communication
range is lacking. The operation frequencies needed for active
wireless communication are not easily achieved with the
available flexible metal-oxide technologies. Operation in the
megahertz regime needs further technological improvements
as well as clever system and circuit design.

The authors’ wireless moisture sensor, which has been
presented in Section V, demonstrates the possibilities offered
by flexible metal-oxide technologies. It integrates all the
needed circuitry and a sensor element on a fully flexible
plastic substrate. In contrast to previous works, it incorporates
a ring oscillator for carrier frequency synthesis, which enables
active radio transmissions. The presented results show that the
employed technology is not fast enough to reach the ISM band
at 13.56 MHz. Implementing the same tag in one of the fastest
reported metal-oxide technologies, would provide a sufficient
performance increase to enable the tag to communicate in
the 13.56 MHz band, without changes to the presented system
design.

The circuit blocks integrated in the presented moisture sen-
sor tag are an on-off-keying modulator, a digitally controlled
oscillator, a moisture sensor, a pseudo-CMOS clocked com-
parator, a latch, and a low-frequency oscillator. The integrated
digitally controlled oscillator synthesizes a carrier frequency
of 1.36 MHz on-chip. The on-off-keying modulator block is
able to modulate this carrier with a 50 kHz baseband signal
and modulation index of around 50 %. The integrated clocked
comparator is triggered by the signal of the low-frequency
oscillator and reads out the sensor state, thus generating the
baseband signal. It has a 28 dB open-loop gain.

Numerous works on flexible oscillators have been reported
in the literature. A selection of reported ring oscillators was
summarized in this article. These circuits are frequently used
to benchmark the high-frequency performance of flexible TFT
technologies. They also act as local oscillators in communi-
cation circuits. However, realizing oscillators for megahertz
frequencies is challenging in metal-oxide technologies and
extraordinarily difficult in organic ones.

Ultimately, flexible circuits may never be able to compete
with the speed and complexity of rigid integrated circuits.
However, flexible electronics already outperform conventional
electronics in terms of mechanical properties, cost, and appli-
cation specific requirements in the field of wearables, biomedi-
cal applications, disposable devices, and the Internet of Things.
Soon, the ability to realize reliable wireless communication in
these flexible devices will enable these technologies to open
up a vast number of new applications.
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